참고문헌
Bach, M. J. (1986). The design of the UNIX. RTM. Operating System
Prentice Hall, 312–329.
Barrera, F. J., Brown, E. D. L., Rojo, A., Obeso, J., Plata, H.,
Lincango, E. P., Terry, N., Rodríguez-Gutiérrez, R., Hall, J. E., &
Shekhar, S. (2023). Application of machine learning and artificial
intelligence in the diagnosis and classification of polycystic ovarian
syndrome: A systematic review. Frontiers in Endocrinology,
14, 1106625. https://doi.org/10.3389/fendo.2023.1106625
Boettiger, C. (2015). An introduction to docker for reproducible
research. ACM SIGOPS Operating Systems Review, 49(1),
71–79. https://doi.org/10.1145/2723872.2723882
Brynjolfsson, E., Li, D., & Raymond, L. R. (2024). Generative AI at
work. Science, 383(6684).
Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T.,
Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0: Step-by-step data
mining guide. SPSS Inc, 9, 1–73.
Cleveland, W. S. (2001). Data science: An action plan for expanding the
technical areas of the field of statistics. International
Statistical Review, 69(1), 21–26.
Dolan, S. et al. (2023). Jq: Command-line JSON processor. https://stedolan.github.io/jq/
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data
mining to knowledge discovery in databases. AI Magazine,
17(3), 37–54.
GitHub. (2024a). Research: Quantifying GitHub copilot’s impact on
developer productivity and happiness. https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
GitHub. (2024b). The economic impact of the AI-powered developer
lifecycle and lessons from GitHub copilot. https://github.blog/news-insights/research/the-economic-impact-of-the-ai-powered-developer-lifecycle-and-lessons-from-github-copilot/
Groskopf, C. et al. (2023). Csvkit: A suite of command-line tools
for working with CSV data. https://csvkit.readthedocs.io/
Janssens, J. H. M. (2021). Data science at the command line: Facing
the future with time-tested tools (2nd ed.). O’Reilly Media. https://datascienceatthecommandline.com/
Kernighan, B. W., & Pike, R. (1984). The unix programming
environment. Prentice Hall.
Lála, J., O’Donoghue, O., Shtedritski, A., Cox, S., Rodriques, S. G.,
& White, A. D. (2023). PaperQA: Retrieval-augmented generative agent
for scientific research. arXiv Preprint arXiv:2312.07559. https://arxiv.org/abs/2312.07559
Marwick, B., Boettiger, C., & Mullen, L. (2018). Packaging data
analytical work reproducibly using r (and friends). The American
Statistician, 72(1), 80–88.
Mason, H., & Wiggins, C. (2010). A taxonomy of data science.
Dataists. http://www.dataists.com/2010/09/a-taxonomy-of-data-science/
McIlroy, M. D., Pinson, E. N., & Tague, B. A. (1978). Unix
time-sharing system: foreword. Bell System Technical Journal,
57(6), 1899–1904.
McKinsey & Company. (2023). The economic potential of generative
AI: The next productivity frontier. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier
Peng, S., Kalliamvakou, E., Cihon, P., & Demirer, M. (2023). The
impact of AI on developer productivity: Evidence from GitHub copilot.
arXiv Preprint arXiv:2302.06590. https://arxiv.org/abs/2302.06590
Stack Overflow. (2024). Stack overflow developer survey 2024.
https://survey.stackoverflow.co/2024/
Stanford HAI. (2024). The 2024 AI index report. Stanford
University Human-Centered AI Institute. https://aiindex.stanford.edu/report/
The Nobel Foundation. (2024). The nobel prize in chemistry
2024. https://www.nobelprize.org/prizes/chemistry/2024/
Wilson, G., Capes, G., Devenyi, G. A., Koch, C., Silva, R., Srinath, A.,
Morris, C., Jackson, M., Boughton, A., Emonet, R., Gacenga, F.,
Nederbragt, L., csqrs, Irving, D., Becker, E. A., Deniz, F., Stimberg,
M., Beagrie, R. A., McCloy, D., … Chhatre, V. (2019). swcarpentry/shell-novice: Software Carpentry: the UNIX
shell, June 2019 (Version v2019.06.1). Zenodo. https://doi.org/10.5281/zenodo.3266823