library(tidyverse)# Create first datasetdataset1 <- data.frame( value = c(0.72, 0.61, 0.35, 0.19, 0.47, 0.99, 0.12, 0.84, 0.65, 0.38, 0.01, 0.25, 0.96, 0.77, 0.54, 0.82, 0.36, 0.43, 0.06, 0.92, 0.21, 0.17, 0.78, 0.68, 0.94, 0.40, 0.52, 0.29))# Create second datasetdataset2 <- data.frame( value = c(0.82, 0.23, 0.67, 0.42, 0.91, 0.17, 0.56, 0.95, 0.03, 0.87, 0.74, 0.45, 0.28, 0.88, 0.51, 0.85, 0.10, 0.72, 0.80, 0.35, 0.57, 0.90, 0.33, 0.06, 0.59, 0.01, 0.23, 0.39))ind_df <- bind_cols(dataset1, dataset2) %>% as_tibble() %>% set_names(c("변수1", "변수2"))# ind_df
ind_df
# A tibble: 28 × 2 변수1 변수2 <dbl> <dbl> 1 0.72 0.82 2 0.61 0.23 3 0.35 0.67 4 0.19 0.42 5 0.47 0.91 6 0.99 0.17 7 0.12 0.56 8 0.84 0.95 9 0.65 0.0310 0.38 0.87# … with 18 more rows
# Create first datasetdataset1 = {'value': [0.72, 0.61, 0.35, 0.19, 0.47, 0.99, 0.12, 0.84, 0.65, 0.38, 0.01, 0.25, 0.96, 0.77, 0.54, 0.82, 0.36, 0.43, 0.06, 0.92, 0.21, 0.17, 0.78, 0.68, 0.94, 0.40, 0.52, 0.29]}# Create second datasetdataset2 = {'value': [0.82, 0.23, 0.67, 0.42, 0.91, 0.17, 0.56, 0.95, 0.03, 0.87, 0.74, 0.45, 0.28, 0.88, 0.51, 0.85, 0.10, 0.72, 0.80, 0.35, 0.57, 0.90, 0.33, 0.06, 0.59, 0.01, 0.23, 0.39, 0.64]}# View first few rows of first datasetprint(list(dataset1.values())[:5])# [0.72, 0.61, 0.35, 0.19, 0.47]
## 데이터셋ind_df %>% slice_head(n=5)
# A tibble: 5 × 2 변수1 변수2 <dbl> <dbl>1 0.72 0.822 0.61 0.233 0.35 0.674 0.19 0.425 0.47 0.91
## 데이터셋ind_df %>% slice_head(n=5)##### 시각화ggplot(data = ind_df)
# A tibble: 5 × 2 변수1 변수2 <dbl> <dbl>1 0.72 0.822 0.61 0.233 0.35 0.674 0.19 0.425 0.47 0.91
## 데이터셋ind_df %>% slice_head(n=5)##### 시각화ggplot(data = ind_df) + aes(x = 변수1)
# A tibble: 5 × 2 변수1 변수2 <dbl> <dbl>1 0.72 0.822 0.61 0.233 0.35 0.674 0.19 0.425 0.47 0.91
## 데이터셋ind_df %>% slice_head(n=5)##### 시각화ggplot(data = ind_df) + aes(x = 변수1) + aes(y = 변수2)
# A tibble: 5 × 2 변수1 변수2 <dbl> <dbl>1 0.72 0.822 0.61 0.233 0.35 0.674 0.19 0.425 0.47 0.91
## 데이터셋ind_df %>% slice_head(n=5)##### 시각화ggplot(data = ind_df) + aes(x = 변수1) + aes(y = 변수2) + geom_point(color = "steelblue", alpha = .8)
# A tibble: 5 × 2 변수1 변수2 <dbl> <dbl>1 0.72 0.822 0.61 0.233 0.35 0.674 0.19 0.425 0.47 0.91
## 데이터셋ind_df %>% slice_head(n=5)##### 시각화ggplot(data = ind_df) + aes(x = 변수1) + aes(y = 변수2) + geom_point(color = "steelblue", alpha = .8)######## 통계검정cor.test(x = ind_df$변수1, y = ind_df$변수1)
# A tibble: 5 × 2 변수1 변수2 <dbl> <dbl>1 0.72 0.822 0.61 0.233 0.35 0.674 0.19 0.425 0.47 0.91
Pearson's product-moment correlationdata: ind_df$변수1 and ind_df$변수1t = Inf, df = 26, p-value < 2.2e-16alternative hypothesis: true correlation is not equal to 095 percent confidence interval: 1 1sample estimates:cor 1
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 0.126 -0.8172 0.838 -2.05 3 -0.517 0.247
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = -1.7116, df = 48, p-value = 0.09343alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.48575406 0.04126876sample estimates: cor -0.2398339
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 -0.992 0.4562 0.519 -0.9823 0.544 1.00
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = -0.68328, df = 48, p-value = 0.4977alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.3664821 0.1852626sample estimates: cor -0.09814626
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 0.780 -0.9272 -0.153 -0.6183 1.01 -0.690
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = -1.083, df = 48, p-value = 0.2842alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.4149515 0.1294715sample estimates: cor -0.154442
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 0.760 0.004932 0.435 1.46 3 0.799 -1.06
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = -1.7686, df = 48, p-value = 0.08332alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.49182941 0.03329733sample estimates: cor -0.2473428
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 2.54 -2.16 2 1.94 -0.5023 0.344 -0.577
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = 0.91172, df = 48, p-value = 0.3665alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.1534495 0.3944922sample estimates: cor 0.1304709
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 -1.17 -0.2042 -0.361 -0.4483 -1.13 -0.756
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = 1.0593, df = 48, p-value = 0.2948alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.1327916 0.4121511sample estimates: cor 0.1511427
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 -0.898 -0.8752 0.703 -0.9263 0.775 -1.69
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = -0.22933, df = 48, p-value = 0.8196alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.3085887 0.2475446sample estimates: cor -0.03308263
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 -0.966 0.350 2 -0.0761 0.980 3 -0.547 -0.0916
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = -1.1484, df = 48, p-value = 0.2565alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.4226367 0.1202971sample estimates: cor -0.1635262
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 -0.689 2.17 2 -1.53 0.6753 -0.193 1.22
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = 0.98493, df = 48, p-value = 0.3296alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.1432103 0.4032958sample estimates: cor 0.1407479
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 0.441 0.4532 -0.283 -0.6553 -0.372 0.203
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = 0.26905, df = 48, p-value = 0.789alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.2421581 0.3137639sample estimates: cor 0.03880529
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 0.289 1.25 2 0.0924 1.49 3 1.41 0.669
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = -0.20304, df = 48, p-value = 0.84alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.3051537 0.2511010sample estimates: cor -0.02929417
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 0.859 -0.7192 -1.04 -0.5693 0.826 0.644
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = 0.18744, df = 48, p-value = 0.8521alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.2532097 0.3031101sample estimates: cor 0.02704411
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 -0.906 -1.47 2 -1.44 -0.6003 0.820 0.736
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = 1.2368, df = 48, p-value = 0.2222alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.1078909 0.4329063sample estimates: cor 0.1757343
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 1.38 0.1142 0.594 -1.77 3 1.83 0.784
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = -0.31639, df = 48, p-value = 0.7531alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.3199051 0.2357213sample estimates: cor -0.04561959
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 -0.257 0.2542 2.11 0.1973 1.51 -0.105
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = -0.36502, df = 48, p-value = 0.7167alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.3261838 0.2290897sample estimates: cor -0.05261299
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 0.354 0.8422 -0.134 0.3293 0.787 0.172
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = 0.48954, df = 48, p-value = 0.6267alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.2120241 0.3421190sample estimates: cor 0.07048327
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 0.623 0.8232 0.380 0.7193 -0.197 -1.63
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = 0.44066, df = 48, p-value = 0.6614alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.2187364 0.3358892sample estimates: cor 0.06347607
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 2.81 1.36 2 -0.632 2.27 3 0.223 0.496
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = -0.86615, df = 48, p-value = 0.3907alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.3889695 0.1598132sample estimates: cor -0.1240528
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 0.0784 -0.5192 0.816 -1.74 3 -0.605 1.66
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = -0.038981, df = 48, p-value = 0.9691alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.2835300 0.2731491sample estimates: cor -0.00562635
library(tidyverse)tibble(hair_length = rnorm(n = 50), brain_weight = rnorm(n = 50)) ->ind_data; ind_data %>% slice_head( n = 3)ggplot(data = ind_data) + aes(x = hair_length) + aes(y = brain_weight) + geom_point(color = "steelblue", alpha = .8) + theme(panel.background = element_rect( color = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, "red", "black"), size = ifelse(cor.test(ind_data$hair_length, ind_data$brain_weight)[[3]]<.05, 8, 3))) + labs(x = "머리털 길이", y = "뇌 무게")cor.test(x = ind_data$hair_length, y = ind_data$brain_weight)
# A tibble: 3 × 2 hair_length brain_weight <dbl> <dbl>1 0.401 0.5622 0.202 1.74 3 -2.04 0.889
Pearson's product-moment correlationdata: ind_data$hair_length and ind_data$brain_weightt = 0.54774, df = 48, p-value = 0.5864alternative hypothesis: true correlation is not equal to 095 percent confidence interval: -0.2040093 0.3494946sample estimates: cor 0.07881394
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 남성 167.2 여성 161.3 여성 183.
Welch Two Sample t-testdata: height_data$height by height_data$sext = -0.85102, df = 45.834, p-value = 0.3992alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -8.855583 3.593026sample estimates:mean in group 남성 mean in group 여성 168.3132 170.9445
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 여성 177.2 남성 172.3 여성 174.
Welch Two Sample t-testdata: height_data$height by height_data$sext = -0.3146, df = 42.926, p-value = 0.7546alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -6.444135 4.704963sample estimates:mean in group 남성 mean in group 여성 169.2713 170.1408
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 여성 187.2 여성 188.3 여성 182.
Welch Two Sample t-testdata: height_data$height by height_data$sext = -1.4062, df = 37.611, p-value = 0.1679alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -11.18836 2.01795sample estimates:mean in group 남성 mean in group 여성 168.7906 173.3758
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 남성 172.2 남성 172.3 여성 190.
Welch Two Sample t-testdata: height_data$height by height_data$sext = -2.5724, df = 47.992, p-value = 0.01325alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -14.464167 -1.772919sample estimates:mean in group 남성 mean in group 여성 166.6604 174.7789
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 남성 170.2 여성 172.3 남성 169.
Welch Two Sample t-testdata: height_data$height by height_data$sext = -0.41433, df = 47.411, p-value = 0.6805alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -7.128098 4.692925sample estimates:mean in group 남성 mean in group 여성 169.9255 171.1431
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 남성 191.2 여성 176.3 여성 184.
Welch Two Sample t-testdata: height_data$height by height_data$sext = -0.56102, df = 42.725, p-value = 0.5777alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -8.507627 4.804919sample estimates:mean in group 남성 mean in group 여성 168.3479 170.1993
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 여성 172.2 남성 174.3 남성 179.
Welch Two Sample t-testdata: height_data$height by height_data$sext = -1.1719, df = 46.689, p-value = 0.2472alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -9.231282 2.435958sample estimates:mean in group 남성 mean in group 여성 171.0713 174.4690
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 여성 155.2 남성 163.3 여성 173.
Welch Two Sample t-testdata: height_data$height by height_data$sext = 0.12071, df = 45.568, p-value = 0.9045alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -5.033867 5.675951sample estimates:mean in group 남성 mean in group 여성 168.9828 168.6618
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 남성 160.2 여성 151.3 남성 159.
Welch Two Sample t-testdata: height_data$height by height_data$sext = -0.58033, df = 46.956, p-value = 0.5645alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -6.934225 3.829343sample estimates:mean in group 남성 mean in group 여성 168.2185 169.7710
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 여성 178.2 남성 175.3 여성 176.
Welch Two Sample t-testdata: height_data$height by height_data$sext = -1.6925, df = 41.7, p-value = 0.09802alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -8.2292225 0.7230509sample estimates:mean in group 남성 mean in group 여성 166.4234 170.1765
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 여성 169.2 남성 184.3 남성 170.
Welch Two Sample t-testdata: height_data$height by height_data$sext = 0.82257, df = 47.402, p-value = 0.4149alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -2.931505 6.988623sample estimates:mean in group 남성 mean in group 여성 174.1101 172.0815
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 남성 147.2 남성 140.3 여성 154.
Welch Two Sample t-testdata: height_data$height by height_data$sext = -0.63894, df = 45.309, p-value = 0.5261alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -9.201881 4.769010sample estimates:mean in group 남성 mean in group 여성 167.5944 169.8109
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 여성 164.2 남성 160.3 남성 164.
Welch Two Sample t-testdata: height_data$height by height_data$sext = 1.5526, df = 47.974, p-value = 0.1271alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -1.225737 9.534091sample estimates:mean in group 남성 mean in group 여성 172.1478 167.9936
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 여성 172.2 남성 169.3 여성 160.
Welch Two Sample t-testdata: height_data$height by height_data$sext = 1.4574, df = 44.749, p-value = 0.152alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -1.511812 9.423371sample estimates:mean in group 남성 mean in group 여성 168.9510 164.9952
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 남성 159.2 남성 175.3 여성 175.
Welch Two Sample t-testdata: height_data$height by height_data$sext = 1.7418, df = 47.964, p-value = 0.08795alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -0.6722814 9.3823483sample estimates:mean in group 남성 mean in group 여성 171.2503 166.8953
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 남성 145.2 남성 166.3 여성 170.
Welch Two Sample t-testdata: height_data$height by height_data$sext = -0.6264, df = 47.952, p-value = 0.534alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -6.860411 3.601249sample estimates:mean in group 남성 mean in group 여성 167.1057 168.7353
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 여성 167.2 여성 174.3 남성 186.
Welch Two Sample t-testdata: height_data$height by height_data$sext = 0.79931, df = 45.599, p-value = 0.4283alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -3.016733 6.988982sample estimates:mean in group 남성 mean in group 여성 170.3059 168.3197
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 여성 160.2 여성 164.3 여성 177.
Welch Two Sample t-testdata: height_data$height by height_data$sext = -0.79109, df = 40.857, p-value = 0.4335alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -7.051308 3.082229sample estimates:mean in group 남성 mean in group 여성 169.0426 171.0271
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 남성 168.2 여성 154.3 남성 183.
Welch Two Sample t-testdata: height_data$height by height_data$sext = 0.45348, df = 25.427, p-value = 0.654alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -5.290816 8.281870sample estimates:mean in group 남성 mean in group 여성 167.7157 166.2202
tibble(sex = sample(x = c("남성","여성"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) -> height_data; height_data %>% slice_head( n = 3)######## visualizationggplot(height_data) + aes(x = sex) + aes(y = height) + aes(group = sex) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs(x= "성별", y = "신장")# statistical testt.test(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$sex) # the discrete variable
# A tibble: 3 × 2 sex height <chr> <dbl>1 여성 170.2 여성 170.3 남성 183.
Welch Two Sample t-testdata: height_data$height by height_data$sext = -0.1438, df = 46.298, p-value = 0.8863alternative hypothesis: true difference in means between group 남성 and group 여성 is not equal to 095 percent confidence interval: -5.773838 5.003770sample estimates:mean in group 남성 mean in group 여성 172.4989 172.8839
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 1반 173.2 3반 170.3 2반 205.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 -0.507663765 -12.875113 11.859785 0.99952423반-1반 -2.954968492 -13.171057 7.261120 0.8671120특수반-1반 -0.505066084 -11.352036 10.341904 0.99930653반-2반 -2.447304727 -14.064500 9.169891 0.9429070특수반-2반 0.002597681 -12.173096 12.178292 1.0000000특수반-3반 2.449902408 -7.533193 12.432998 0.9135634
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 1반 172.2 3반 172.3 1반 162.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 0.9415869 -11.19792 13.081099 0.99682903반-1반 -1.0328743 -12.98240 10.916649 0.9956295특수반-1반 -3.0043967 -15.14391 9.135115 0.91158923반-2반 -1.9744613 -13.09063 9.141709 0.9645455특수반-2반 -3.9459837 -15.26614 7.374170 0.7894170특수반-3반 -1.9715224 -13.08769 9.144647 0.9646944
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 1반 167.2 3반 171.3 2반 167.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 -1.5178444 -11.721244 8.685556 0.97861963반-1반 -0.7390442 -9.575448 8.097359 0.9960354특수반-1반 -4.3012202 -13.907404 5.304963 0.63400563반-2반 0.7788002 -9.424600 10.982200 0.9969766특수반-2반 -2.7833758 -13.660237 8.093485 0.9033799특수반-3반 -3.5621760 -13.168360 6.044008 0.7567074
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 2반 160.2 1반 166.3 특수반 155.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 -0.8917641 -13.07714 11.29361 0.99733153반-1반 0.1908132 -12.28924 12.67087 0.9999753특수반-1반 -1.6278026 -13.55815 10.30254 0.98333983반-2반 1.0825773 -11.84699 14.01214 0.9960224특수반-2반 -0.7360386 -13.13584 11.66376 0.9985687특수반-3반 -1.8186159 -14.50812 10.87088 0.9807962
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 1반 171.2 1반 177.3 3반 157.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 -7.029198 -17.683519 3.6251236 0.30617713반-1반 -8.690892 -17.745324 0.3635402 0.0641399특수반-1반 -2.326404 -11.380836 6.7280286 0.90234133반-2반 -1.661694 -11.387714 8.0643263 0.9682400특수반-2반 4.702794 -5.023226 14.4288146 0.5745900특수반-3반 6.364488 -1.576774 14.3057506 0.1570043
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 2반 183.2 3반 186.3 1반 163.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 6.0228745 -5.284201 17.329950 0.49373123반-1반 4.9100396 -4.945968 14.766048 0.5502779특수반-1반 6.9684918 -4.699264 18.636247 0.39317633반-2반 -1.1128349 -11.996273 9.770603 0.9928257특수반-2반 0.9456173 -11.602085 13.493320 0.9970887특수반-3반 2.0584522 -9.199247 13.316151 0.9615234
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 특수반 173.2 3반 171.3 1반 160.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 0.1944076 -10.008963 10.397778 0.99995223반-1반 -3.0937827 -12.288317 6.100751 0.8064722특수반-1반 3.5734003 -5.276646 12.423447 0.70557703반-2반 -3.2881903 -12.776018 6.199637 0.7922900특수반-2반 3.3789927 -5.775390 12.533376 0.7592784특수반-3반 6.6671831 -1.347392 14.681758 0.1337197
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 1반 178.2 2반 181.3 특수반 157.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 -0.6269522 -12.068942 10.815038 0.99887253반-1반 -5.9847571 -17.838865 5.869351 0.5392161특수반-1반 -2.4449258 -14.078938 9.189086 0.94328653반-2반 -5.3578049 -16.529625 5.814016 0.5811496특수반-2반 -1.8179736 -12.755978 9.120031 0.9706323특수반-3반 3.5398313 -7.828576 14.908238 0.8399599
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 3반 170.2 1반 159.3 특수반 151.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 7.362096 -4.288616 19.012807 0.34347563반-1반 5.310581 -6.930985 17.552148 0.6569685특수반-1반 1.685360 -9.342887 12.713606 0.97689843반-2반 -2.051514 -14.512875 10.409846 0.9714190특수반-2반 -5.676736 -16.948461 5.594989 0.5412664특수반-3반 -3.625222 -15.506663 8.256219 0.8478744
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 1반 162.2 특수반 169.3 특수반 159.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 4.3819317 -6.511688 15.27555 0.70800033반-1반 3.6282720 -7.265348 14.52189 0.8111850특수반-1반 4.2143404 -6.679279 15.10796 0.73216293반-2반 -0.7536597 -12.058503 10.55118 0.9979775특수반-2반 -0.1675913 -11.472435 11.13725 0.9999775특수반-3반 0.5860684 -10.718775 11.89091 0.9990442
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 2반 182.2 3반 196.3 특수반 185.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 4.9569108 -6.345439 16.259260 0.64915233반-1반 8.4427600 -3.806325 20.691845 0.2694392특수반-1반 0.6507311 -11.032703 12.334165 0.99881623반-2반 3.4858492 -6.714767 13.686465 0.7991426특수반-2반 -4.3061796 -13.820123 5.207763 0.6259570특수반-3반 -7.7920288 -18.413332 2.829275 0.2198131
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 2반 167.2 3반 169.3 1반 165.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 -1.2784275 -9.098871 6.542016 0.97198803반-1반 -0.9964659 -9.306151 7.313219 0.9885548특수반-1반 0.7856471 -9.075129 10.646423 0.99656633반-2반 0.2819616 -8.145597 8.709521 0.9997419특수반-2반 2.0640746 -7.896236 12.024385 0.9454379특수반-3반 1.7821130 -8.566767 12.130992 0.9675213
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 특수반 176.2 특수반 183.3 특수반 182.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 2.608015 -8.460510 13.676540 0.92250753반-1반 3.440079 -8.168688 15.048846 0.8586704특수반-1반 1.416289 -8.937368 11.769946 0.98321613반-2반 0.832064 -10.776703 12.440831 0.9974915특수반-2반 -1.191726 -11.545383 9.161931 0.9898464특수반-3반 -2.023790 -12.953082 8.905503 0.9601327
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 1반 184.2 3반 159.3 2반 173.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 -8.611609 -20.191754 2.968535 0.20953873반-1반 -3.545602 -15.713022 8.621819 0.8645720특수반-1반 -2.492975 -13.454424 8.468474 0.92958923반-2반 5.066008 -7.319876 17.451891 0.6972066특수반-2반 6.118634 -5.084819 17.322087 0.4720622특수반-3반 1.052627 -10.756850 12.862103 0.9952138
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 1반 181.2 특수반 155.3 3반 148.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 -0.6167487 -14.213979 12.98048 0.99935873반-1반 -3.1711394 -16.382554 10.04027 0.9185444특수반-1반 1.2636609 -11.331134 13.85846 0.99321463반-2반 -2.5543907 -17.292340 12.18356 0.9669205특수반-2반 1.8804096 -12.307421 16.06824 0.9846849특수반-3반 4.4348003 -9.383714 18.25332 0.8275308
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 특수반 181.2 3반 174.3 특수반 170.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 -1.7022876 -12.013301 8.608726 0.97118883반-1반 -0.6117371 -9.147579 7.924105 0.9974924특수반-1반 1.5169569 -6.708386 9.742300 0.96058283반-2반 1.0905505 -9.469816 11.650917 0.9926137특수반-2반 3.2192446 -7.091769 13.530258 0.8388842특수반-3반 2.1286941 -6.407148 10.664536 0.9097742
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 3반 187.2 1반 156.3 2반 183.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 -1.710227 -12.856377 9.435924 0.97663093반-1반 2.187413 -7.946802 12.321628 0.9389604특수반-1반 0.836745 -12.216290 13.889780 0.99820033반-2반 3.897639 -6.478862 14.274141 0.7494392특수반-2반 2.546972 -10.695052 15.788995 0.9556536특수반-3반 -1.350668 -13.752959 11.051624 0.9913661
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 1반 153.2 3반 161.3 2반 161.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 2.334310 -10.908206 15.576826 0.96530013반-1반 4.332345 -9.044616 17.709306 0.8236343특수반-1반 2.176488 -11.066028 15.419004 0.97155433반-2반 1.998035 -8.189556 12.185625 0.9531745특수반-2반 -0.157822 -10.168223 9.852579 0.9999729특수반-3반 -2.155857 -12.343447 8.031734 0.9421920
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 1반 163.2 1반 166.3 3반 174.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 -2.2323418 -11.552461 7.087777 0.91901023반-1반 7.0739378 -3.165037 17.312913 0.2674992특수반-1반 -0.9556717 -10.911486 9.000143 0.99404343반-2반 9.3062796 -1.077936 19.690495 0.0935213특수반-2반 1.2766701 -8.828456 11.381796 0.9866748특수반-3반 -8.0296095 -18.987965 2.928746 0.2207354
tibble(class = sample(x = c("1반","2반","3반","특수반"), size = 50, replace = TRUE)) %>% mutate(height = rnorm(n = 50, mean = 170, sd = 10)) ->height_data; height_data %>% slice_head( n = 3)##### visualizationggplot(height_data) + aes(x = class) + aes(y = height) + aes(group = class) + geom_boxplot() + geom_jitter(height = 0, width = .02) + stat_summary(fun.y = mean, geom = "point", col = "goldenrod3", size = 5) + labs( x = "학년", y = "신장")# statistical testTukeyHSD(aov(height_data$height ~ # the continuous variable by (~) # the continuous variable by (~) height_data$class)) # the discrete variable
# A tibble: 3 × 2 class height <chr> <dbl>1 1반 164.2 특수반 166.3 2반 154.
Tukey multiple comparisons of means 95% family-wise confidence levelFit: aov(formula = height_data$height ~ height_data$class)$`height_data$class` diff lwr upr p adj2반-1반 -1.4028727 -13.520144 10.71440 0.98967193반-1반 -0.3325582 -12.088038 11.42292 0.9998439특수반-1반 0.1860896 -12.263223 12.63540 0.99997693반-2반 1.0703145 -8.376831 10.51746 0.9903059특수반-2반 1.5889623 -8.708738 11.88666 0.9762505특수반-3반 0.5186478 -9.350784 10.38808 0.9990047
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 남자 오른손잡이2 남자 오른손잡이3 남자 오른손잡이
yx 오른손잡이 왼손잡이 남자 40 14 여자 32 14
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 0.076761, df = 1, p-value = 0.7817
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 여자 오른손잡이2 남자 오른손잡이3 남자 왼손잡이
yx 오른손잡이 왼손잡이 남자 31 8 여자 42 19
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 0.87884, df = 1, p-value = 0.3485
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 남자 왼손잡이 2 여자 오른손잡이3 여자 오른손잡이
yx 오른손잡이 왼손잡이 남자 29 24 여자 34 13
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 2.6061, df = 1, p-value = 0.1065
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 여자 오른손잡이2 남자 오른손잡이3 여자 왼손잡이
yx 오른손잡이 왼손잡이 남자 38 14 여자 29 19
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 1.2821, df = 1, p-value = 0.2575
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 남자 왼손잡이 2 남자 오른손잡이3 여자 오른손잡이
yx 오른손잡이 왼손잡이 남자 34 20 여자 38 8
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 3.8309, df = 1, p-value = 0.05031
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 여자 오른손잡이2 남자 오른손잡이3 남자 왼손잡이
yx 오른손잡이 왼손잡이 남자 37 16 여자 32 15
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 0, df = 1, p-value = 1
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 여자 오른손잡이2 여자 왼손잡이 3 여자 오른손잡이
yx 오른손잡이 왼손잡이 남자 37 14 여자 33 16
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 0.12195, df = 1, p-value = 0.7269
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 여자 오른손잡이2 여자 오른손잡이3 남자 오른손잡이
yx 오른손잡이 왼손잡이 남자 35 15 여자 37 13
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 0.049603, df = 1, p-value = 0.8238
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 여자 오른손잡이2 여자 오른손잡이3 남자 오른손잡이
yx 오른손잡이 왼손잡이 남자 35 15 여자 34 16
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 0, df = 1, p-value = 1
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 여자 왼손잡이 2 여자 오른손잡이3 여자 오른손잡이
yx 오른손잡이 왼손잡이 남자 38 11 여자 44 7
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 0.76518, df = 1, p-value = 0.3817
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 여자 오른손잡이2 여자 왼손잡이 3 남자 왼손잡이
yx 오른손잡이 왼손잡이 남자 39 14 여자 33 14
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 0.023019, df = 1, p-value = 0.8794
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 여자 오른손잡이2 남자 오른손잡이3 여자 오른손잡이
yx 오른손잡이 왼손잡이 남자 39 13 여자 31 17
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 0.84135, df = 1, p-value = 0.359
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 여자 왼손잡이 2 여자 오른손잡이3 여자 오른손잡이
yx 오른손잡이 왼손잡이 남자 38 14 여자 32 16
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 0.23085, df = 1, p-value = 0.6309
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 남자 오른손잡이2 남자 왼손잡이 3 남자 오른손잡이
yx 오른손잡이 왼손잡이 남자 32 16 여자 33 19
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 0.01585, df = 1, p-value = 0.8998
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 남자 오른손잡이2 남자 오른손잡이3 남자 오른손잡이
yx 오른손잡이 왼손잡이 남자 41 12 여자 34 13
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 0.12043, df = 1, p-value = 0.7286
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 여자 오른손잡이2 남자 왼손잡이 3 여자 오른손잡이
yx 오른손잡이 왼손잡이 남자 32 20 여자 34 14
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 0.59139, df = 1, p-value = 0.4419
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 남자 오른손잡이2 남자 오른손잡이3 남자 오른손잡이
yx 오른손잡이 왼손잡이 남자 39 14 여자 35 12
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 4.8721e-31, df = 1, p-value = 1
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 남자 왼손잡이 2 남자 오른손잡이3 여자 오른손잡이
yx 오른손잡이 왼손잡이 남자 32 16 여자 37 15
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 0.071999, df = 1, p-value = 0.7884
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 남자 왼손잡이 2 남자 오른손잡이3 남자 오른손잡이
yx 오른손잡이 왼손잡이 남자 36 12 여자 43 9
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 0.48695, df = 1, p-value = 0.4853
# 데이터tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = TRUE, prob = c(.3,.7))) ->handed_data ; handed_data %>% slice_head( n = 3)# 시각화library(ggmosaic); library(janitor); library(patchwork)ggplot(data = handed_data) + geom_mosaic(aes(x = product(sex), fill = handed)) + labs(x = "성별", y = "손잡이", fill = "손잡이 구분")# 표table(x = handed_data$sex, y = handed_data$handed)##### 검정통계량chisq.test(x = handed_data$sex, y = handed_data$handed)
# A tibble: 3 × 2 sex handed <chr> <chr> 1 여자 오른손잡이2 여자 왼손잡이 3 남자 오른손잡이
yx 오른손잡이 왼손잡이 남자 33 19 여자 32 16
Pearson's Chi-squared test with Yates' continuity correctiondata: handed_data$sex and handed_data$handedX-squared = 0.01585, df = 1, p-value = 0.8998
library(gt); library(janitor)
library(gt); library(janitor)handed_data <- tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = T, prob = c(.3,.7)))
library(gt); library(janitor)handed_data <- tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = T, prob = c(.3,.7)))# 표handed_data
# A tibble: 100 × 2 sex handed <chr> <chr> 1 여자 왼손잡이 2 남자 오른손잡이 3 남자 오른손잡이 4 남자 오른손잡이 5 남자 오른손잡이 6 여자 왼손잡이 7 남자 오른손잡이 8 남자 오른손잡이 9 여자 오른손잡이10 남자 오른손잡이# … with 90 more rows
library(gt); library(janitor)handed_data <- tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = T, prob = c(.3,.7)))# 표handed_data %>% tabyl(sex, handed)
sex 오른손잡이 왼손잡이 남자 33 11 여자 36 20
library(gt); library(janitor)handed_data <- tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = T, prob = c(.3,.7)))# 표handed_data %>% tabyl(sex, handed) %>% adorn_totals(where = c("row", "col"), name = "합계")
sex 오른손잡이 왼손잡이 합계 남자 45 11 56 여자 28 16 44 합계 73 27 100
library(gt); library(janitor)handed_data <- tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = T, prob = c(.3,.7)))# 표handed_data %>% tabyl(sex, handed) %>% adorn_totals(where = c("row", "col"), name = "합계") %>% adorn_percentages(denominator = "col")
sex 오른손잡이 왼손잡이 합계 남자 0.5822785 0.3809524 0.54 여자 0.4177215 0.6190476 0.46 합계 1.0000000 1.0000000 1.00
library(gt); library(janitor)handed_data <- tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = T, prob = c(.3,.7)))# 표handed_data %>% tabyl(sex, handed) %>% adorn_totals(where = c("row", "col"), name = "합계") %>% adorn_percentages(denominator = "col") %>% adorn_pct_formatting(digits = 0)
sex 오른손잡이 왼손잡이 합계 남자 42% 66% 49% 여자 58% 34% 51% 합계 100% 100% 100%
library(gt); library(janitor)handed_data <- tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = T, prob = c(.3,.7)))# 표handed_data %>% tabyl(sex, handed) %>% adorn_totals(where = c("row", "col"), name = "합계") %>% adorn_percentages(denominator = "col") %>% adorn_pct_formatting(digits = 0) %>% adorn_ns(position = "rear")
sex 오른손잡이 왼손잡이 합계 남자 60% (40) 52% (17) 57% (57) 여자 40% (27) 48% (16) 43% (43) 합계 100% (67) 100% (33) 100% (100)
library(gt); library(janitor)handed_data <- tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = T, prob = c(.3,.7)))# 표handed_data %>% tabyl(sex, handed) %>% adorn_totals(where = c("row", "col"), name = "합계") %>% adorn_percentages(denominator = "col") %>% adorn_pct_formatting(digits = 0) %>% adorn_ns(position = "rear") %>%# 표 외양 gt()
sex | 오른손잡이 | 왼손잡이 | 합계 |
---|---|---|---|
남자 | 44% (31) | 55% (16) | 47% (47) |
여자 | 56% (40) | 45% (13) | 53% (53) |
합계 | 100% (71) | 100% (29) | 100% (100) |
library(gt); library(janitor)handed_data <- tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = T, prob = c(.3,.7)))# 표handed_data %>% tabyl(sex, handed) %>% adorn_totals(where = c("row", "col"), name = "합계") %>% adorn_percentages(denominator = "col") %>% adorn_pct_formatting(digits = 0) %>% adorn_ns(position = "rear") %>%# 표 외양 gt() %>% tab_header( title = md("**☛ 2변량 교차 범주형 데이터 ☚**"), )
☛ 2변량 교차 범주형 데이터 ☚ | |||
sex | 오른손잡이 | 왼손잡이 | 합계 |
---|---|---|---|
남자 | 42% (30) | 38% (11) | 41% (41) |
여자 | 58% (41) | 62% (18) | 59% (59) |
합계 | 100% (71) | 100% (29) | 100% (100) |
library(gt); library(janitor)handed_data <- tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = T, prob = c(.3,.7)))# 표handed_data %>% tabyl(sex, handed) %>% adorn_totals(where = c("row", "col"), name = "합계") %>% adorn_percentages(denominator = "col") %>% adorn_pct_formatting(digits = 0) %>% adorn_ns(position = "rear") %>%# 표 외양 gt() %>% tab_header( title = md("**☛ 2변량 교차 범주형 데이터 ☚**"), ) %>% cols_align( align = "right", columns = c(오른손잡이, 왼손잡이, 합계) )
☛ 2변량 교차 범주형 데이터 ☚ | |||
sex | 오른손잡이 | 왼손잡이 | 합계 |
---|---|---|---|
남자 | 49% (33) | 66% (21) | 54% (54) |
여자 | 51% (35) | 34% (11) | 46% (46) |
합계 | 100% (68) | 100% (32) | 100% (100) |
library(gt); library(janitor)handed_data <- tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = T, prob = c(.3,.7)))# 표handed_data %>% tabyl(sex, handed) %>% adorn_totals(where = c("row", "col"), name = "합계") %>% adorn_percentages(denominator = "col") %>% adorn_pct_formatting(digits = 0) %>% adorn_ns(position = "rear") %>%# 표 외양 gt() %>% tab_header( title = md("**☛ 2변량 교차 범주형 데이터 ☚**"), ) %>% cols_align( align = "right", columns = c(오른손잡이, 왼손잡이, 합계) ) %>% tab_options( table.width = pct(70), heading.background.color = "#1E61B0", # R logo 파란색 heading.title.font.size = "17px", column_labels.background.color = "#F7F7F7", # R logo 회색 column_labels.font.weight = "bold", stub.background.color = "#ffffff", stub.font.weight = "bold" )
☛ 2변량 교차 범주형 데이터 ☚ | |||
sex | 오른손잡이 | 왼손잡이 | 합계 |
---|---|---|---|
남자 | 39% (25) | 47% (17) | 42% (42) |
여자 | 61% (39) | 53% (19) | 58% (58) |
합계 | 100% (64) | 100% (36) | 100% (100) |
library(gt); library(janitor)handed_data <- tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = T, prob = c(.3,.7)))# 표handed_data %>% tabyl(sex, handed) %>% adorn_totals(where = c("row", "col"), name = "합계") %>% adorn_percentages(denominator = "col") %>% adorn_pct_formatting(digits = 0) %>% adorn_ns(position = "rear") %>%# 표 외양 gt() %>% tab_header( title = md("**☛ 2변량 교차 범주형 데이터 ☚**"), ) %>% cols_align( align = "right", columns = c(오른손잡이, 왼손잡이, 합계) ) %>% tab_options( table.width = pct(70), heading.background.color = "#1E61B0", # R logo 파란색 heading.title.font.size = "17px", column_labels.background.color = "#F7F7F7", # R logo 회색 column_labels.font.weight = "bold", stub.background.color = "#ffffff", stub.font.weight = "bold" ) %>% tab_spanner(label = "요약 통계량", columns = c(오른손잡이, 왼손잡이))
☛ 2변량 교차 범주형 데이터 ☚ | |||
sex | 요약 통계량 | 합계 | |
---|---|---|---|
오른손잡이 | 왼손잡이 | ||
남자 | 46% (30) | 57% (20) | 50% (50) |
여자 | 54% (35) | 43% (15) | 50% (50) |
합계 | 100% (65) | 100% (35) | 100% (100) |
library(gt); library(janitor)handed_data <- tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = T, prob = c(.3,.7)))# 표handed_data %>% tabyl(sex, handed) %>% adorn_totals(where = c("row", "col"), name = "합계") %>% adorn_percentages(denominator = "col") %>% adorn_pct_formatting(digits = 0) %>% adorn_ns(position = "rear") %>%# 표 외양 gt() %>% tab_header( title = md("**☛ 2변량 교차 범주형 데이터 ☚**"), ) %>% cols_align( align = "right", columns = c(오른손잡이, 왼손잡이, 합계) ) %>% tab_options( table.width = pct(70), heading.background.color = "#1E61B0", # R logo 파란색 heading.title.font.size = "17px", column_labels.background.color = "#F7F7F7", # R logo 회색 column_labels.font.weight = "bold", stub.background.color = "#ffffff", stub.font.weight = "bold" ) %>% tab_spanner(label = "요약 통계량", columns = c(오른손잡이, 왼손잡이)) %>% tab_style( style = list( cell_fill(color = "lightblue"), cell_text( align = "right", size = "large", weight = "bold") ), locations = cells_body(rows = sex == "합계", columns = 합계))
☛ 2변량 교차 범주형 데이터 ☚ | |||
sex | 요약 통계량 | 합계 | |
---|---|---|---|
오른손잡이 | 왼손잡이 | ||
남자 | 57% (46) | 68% (13) | 59% (59) |
여자 | 43% (35) | 32% (6) | 41% (41) |
합계 | 100% (81) | 100% (19) | 100% (100) |
library(gt); library(janitor)handed_data <- tibble(sex = sample(x = c("남자","여자"), size = 100, replace = TRUE), handed = sample(x = c("왼손잡이", "오른손잡이"), size = 100, replace = T, prob = c(.3,.7)))# 표handed_data %>% tabyl(sex, handed) %>% adorn_totals(where = c("row", "col"), name = "합계") %>% adorn_percentages(denominator = "col") %>% adorn_pct_formatting(digits = 0) %>% adorn_ns(position = "rear") %>%# 표 외양 gt() %>% tab_header( title = md("**☛ 2변량 교차 범주형 데이터 ☚**"), ) %>% cols_align( align = "right", columns = c(오른손잡이, 왼손잡이, 합계) ) %>% tab_options( table.width = pct(70), heading.background.color = "#1E61B0", # R logo 파란색 heading.title.font.size = "17px", column_labels.background.color = "#F7F7F7", # R logo 회색 column_labels.font.weight = "bold", stub.background.color = "#ffffff", stub.font.weight = "bold" ) %>% tab_spanner(label = "요약 통계량", columns = c(오른손잡이, 왼손잡이)) %>% tab_style( style = list( cell_fill(color = "lightblue"), cell_text( align = "right", size = "large", weight = "bold") ), locations = cells_body(rows = sex == "합계", columns = 합계))
☛ 2변량 교차 범주형 데이터 ☚ | |||
sex | 요약 통계량 | 합계 | |
---|---|---|---|
오른손잡이 | 왼손잡이 | ||
남자 | 49% (33) | 58% (19) | 52% (52) |
여자 | 51% (34) | 42% (14) | 48% (48) |
합계 | 100% (67) | 100% (33) | 100% (100) |
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |