{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Hyper Parameter 튜닝 - Random Forest\n", "\n", "\n", "참고: [하이퍼파라미터 튜닝, emseoyk.log](https://velog.io/@emseoyk/%ED%95%98%EC%9D%B4%ED%8D%BC%ED%8C%8C%EB%9D%BC%EB%AF%B8%ED%84%B0-%ED%8A%9C%EB%8B%9D)\n", "\n", "## 환경설정" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "from sklearn import preprocessing # 전처리\n", "\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.model_selection import cross_val_score\n", "from sklearn.metrics import mean_squared_error as MSE\n", "\n", "from sklearn.ensemble import RandomForestRegressor" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 데이터셋" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# 2. 데이터셋\n", "mpg_df = pd.read_csv('data/auto-mpg.csv', index_col='car name')\n", "mpg_df = mpg_df[mpg_df.horsepower != '?']\n", "\n", "# 3. 훈련/시험 데이터셋\n", "y = mpg_df[['mpg']]\n", "X = mpg_df.loc[:, 'cylinders':'origin']\n", "\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state = 777)\n", "y_train = np.ravel(y_train,order='C') " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 기계학습\n", "\n", "### 1. Hyper Parameters for Random Forest" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | 초기값 | \n", "
---|---|
bootstrap | \n", "True | \n", "
ccp_alpha | \n", "0.0 | \n", "
criterion | \n", "squared_error | \n", "
max_depth | \n", "None | \n", "
max_features | \n", "auto | \n", "
max_leaf_nodes | \n", "None | \n", "
max_samples | \n", "None | \n", "
min_impurity_decrease | \n", "0.0 | \n", "
min_samples_leaf | \n", "1 | \n", "
min_samples_split | \n", "2 | \n", "
min_weight_fraction_leaf | \n", "0.0 | \n", "
n_estimators | \n", "100 | \n", "
n_jobs | \n", "None | \n", "
oob_score | \n", "False | \n", "
random_state | \n", "777 | \n", "
verbose | \n", "0 | \n", "
warm_start | \n", "False | \n", "